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A Dual Extended Kalman Filter was implemented for the identification of time-varying

human manual control behavior. Two filters that run concurrently were used, a state

filter that estimates the equalization dynamics, and a parameter filter that estimates the

neuromuscular parameters and time delay. Time-varying parameters were modeled as a

random walk. The filter successfully estimated time-varying human control behavior in

both simulated and experimental data. Simple guidelines are proposed for the tuning of

the process and measurement covariance matrices and the initial parameter estimates. The

tuning was performed on simulation data, and when applied on experimental data, only an

increase in measurement process noise power was required in order for the filter to converge

and estimate all parameters. A sensitivity analysis to initial parameter estimates showed

that the filter is more sensitive to poor initial choices of neuromuscular parameters than

equalization parameters, and bad choices for initial parameters can result in divergence,

slow convergence, or parameter estimates that do not have a real physical interpretation.

The promising results when applied to experimental data, together with its simple tuning

and low dimension of the state-space, make the use of the Dual Extended Kalman Filter

a viable option for identifying time-varying human control parameters in manual tracking

tasks, which could be used in real-time human state monitoring and adaptive human-vehicle

haptic interfaces.

Nomenclature

e error signal, −
F derivative of the state equation
f state equation
ff forcing function, −
G derivative of the output equation
g output equation
Hc controlled dynamics
Hp human controller response
I identity matrix
K Kalman gains
Kp visual position gain, −
Kv visual rate gain, −

n pilot remnant
P state covariance matrices
Q process noise covariance matrix
q2 error signal variance factor
R measurement noise variance
r2 control signal variance factor
s Laplace operator
TL pilot lead time constant, s
t time, s
u pilot control input, −
û modeled control input, −
xs state filter state vector
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θ parameter filter state vector
ζn neuromuscular damping, −
σ standard deviation
τv visual time delay, s
Φ discrete version of F
ωn neuromuscular frequency, rad s−1

w process noise
v measurement noise
y controlled dynamics output
Γ discrete input identity matrices
∆t time step, s

Superscripts

− prediction
+ correction
tot total

Subscripts

0 initial value
k discrete time index
p parameter filter
s state filter

Abbreviations

cov covariance
diag diagonal matrix
DEKF Dual Extended Kalman Filter
MLE Maximum Likelihood Estimation
VAF variance accounted for

I. Introduction

In manual control tasks, humans combine the perception of different cues from the outside environment
in order to perform suitable control actions. Linear, time-invariant transfer functions have been widely
used to model human manual control behavior and can explain a large part of the mechanism behind it.1

These models capture equalization dynamics, required for a stable closed-loop performance, neuromuscular
limitations, and a stochastic signal, the remnant, that captures the part of the human’s control input that
is not explained by the linear models.

In reality, however, there are many scenarios in which human control behavior is highly time-varying.
First, humans adapt their control behavior depending on vehicle dynamics.1For example, changing external
conditions, systems failure, or flying close to the stall regime, can result in sudden changes vehicle dynamics
that affect human control strategy. Second, intrinsic behavioral factors such as fatigue, motivation and
stress can also result the human operator to adopt different manual control strategies. Identifying when
these changes occur and understanding how human behavior adapts to these changes, could be used in
the design process of haptic control and failure detection systems, and potentially as a tool for real-time
monitoring of human state and performance. Thus, the need for a real-time, time-varying human control
parameter identification technique is evident.

Multiple methods exist currently for the estimation of human control model parameters. Frequency
domain techniques or linear time-invariant models were successfully used in the past to obtain human control
models.2, 3 For these methods to provide parameter estimates with a small bias, a high signal-to-noise ratio
is required, which can only be obtained by averaging time-domain signals in order to reduce the effect of
the stochastic remnant signal. This, however, imposes a severe limitation on the real-time identification
of parameters. Furthermore, special considerations are required for the design of forcing functions used
in the experiment. A time-domain identification technique based on Maximum Likelihood Estimation has
also been successfully applied for the identification of multichannel, pilot models.4 The same technique was
used to identify time-varying human control behavior,5 however a scheduling function for the parameter
variation was required in advance. This limits the use of the technique for real-world applications, where no
prior knowledge is available on the changes of the parameters. Wavelet transforms were also used for the
identification of time-varying human control frequency response functions, however this technique does not
generally allow for the direct estimation of the time-varying human control model parameters.6

Kalman filters7 have been widely used for the estimation of both the states and the parameters. There are
typically two approaches by which this can be achieved. In the joint estimation, the parameters are included
in an augmented state space model and the regular state estimation is performed.8 In this estimation
approach, the multiplication between the states and the parameters makes the system inherently nonlinear.
Therefore, the Extended Kalman Filter or the Unscented Kalman Filter methods are typically used. In the
dual estimation technique, which is suggested to have better convergence properties, two separate filters run
concurrently: one that estimates the states of a model, and one that estimates the parameters.9 This allows
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the separation of the nonlinear system into two separate, less strongly nonlinear estimation problems. The
results from the state filter are used in the parameter filter and vice versa.10 These methods have been
used in several studies for the estimation of both the states and the parameters of electrical and mechanical
systems.11, 12 Schiess et al. attempted the estimation of human control model parameters using an Exteded
Kalman Filter, in which all the parameters were augmented in a single the state-space representation.13

While the filter manages to reasonably estimate the parameters on computer generated data, it mostly
diverges when applied to experimental data. With careful choice of the parameter process noise covariances,
the filter managed to converge, but the estimation of all parameters was rarely achieved.

The goal of this paper is to develop a Dual Extended Kalman Filter (DEKF) implementation aimed at
the identification of time-varying, single-axis human control model parameters. The performance of the filter
is analyzed on simulated data, as well as experimental data obtained from a previous experimental study.5

II. Human Control Model
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Figure 1: Compensatory tracking task control diagram.

The control diagram of a typical single-axis manual tracking task is depicted in Figure 1. The goal
of the human operator is to continuously minimize the error e presented on the simplified primary flight
display (PFD), by providing control inputs u with a joystick. These inputs are transformed into the output
y through the controlled dynamics transfer function Hc. The error e represents the difference between the
target forcing function ff and the output y.

In such tasks, human control behavior can be represented by a quasi-linear human operator model that
is composed of two parts.1 A linear transfer function, Hp captures equalization dynamics, time delays, and
neuromuscular limitations. The second part is represented by a remnant signal n, which accounts for the
human controller’s nonlinear behavior. This signal is modeled as a first-order low pass filter according to
Levison’s remnant model,14 which makes this signal inherently colored.

According to McRuer’s crossover model, humans adjust their control strategy such that the human
controller-vehicle dynamics open-loop transfer function approximates a single integrator near the crossover
frequency.1 If the controlled dynamics are time-varying, then the human controller likely also becomes time-
varying, achieving the required performance and stability requirements. Considering controlled dynamics
close to a double-integrator, significant visual lead is required. The human operator transfer function Hp

then becomes:

Hp(s) = Kp(1 + TLs)e
−τvs

ω2
n

ω2
n + 2ζnωns+ s2

= (Kp +Kvs)e
−τvs

ω2
n

ω2
n + 2ζnωns+ s2

(1)

Visual gain Kp and visual lead time constant TL represent the human operator’s equalization used
to achieve the desired performance, whereas physical limitations are given by the visual time delay τv,
neuromuscular damping ζn and neuromuscular frequency ωn. The equation can be rewritten such that
the equalization is represented by two gains, one on the error position signal, Kp, and one on the error
velocity signal, Kv. Assuming that the control input excites the system sufficiently, there are five identifiable
parameters from Equation (1): Kp, Kv, τv, ωn, and ζn.

III. Dual Extended Kalman Filter

As mentioned in Section I, a dual Kalman filter implementation uses two separated filters, one that
estimates the states of the system and one that estimates the parameters of interest. Applied to the human
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manual control identification problem, two concurrent filters are used, one estimating the states and equal-
ization parameters of the human controller model, which will be called the state filter throughout this paper,
and one that estimates the time delay and neuromuscular parameters, which will be called the parameter

filter. A diagram of the two filters working in parallel is shown in Figure 2.
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Figure 2: The state and parameter filters.

The parameter filter prediction θ−k is used in the state filter prediction x−
s,k, and the prediction of the state

filter is used in the parameter filter correction, θ+k . The error signal e only drives the state filter prediction,
as an external input. The control input u is used in the measurement equation of both filters. A detailed
representation of all system equations for both filters is given in Appendix A.

A. Filter implementation

For the implementation of the Kalman filters, a state-space representation of the model is required. In
order to convert the time delay τv into a state-space representation, a 3rd order Padé approximation is used,
making the need for the Extended version of the filters apparent.

The state-space representation of the state filter is given in Equations (2) and (3):

ẋs(t) = f(xs(t), e(t), θ(t)) +ws(t) cov(ws) = Qs (2)

u(t) = g(xs(t), θ(t)) + v(t) cov(v(t)) = R (3)

with xs = [xs,1 xs,2 xs,3 xs,4 xs,5 Kp Kv]
T
. The first five states of xs come from the state space controllable

canonical form, and do not have real physical meaning. Error position and error velocity parameters are
augmented in the state vector of the state filter, since they only appear in the output equation g (see
Equations (40) and (41)). θ(t) is the parameter vector estimated by the second filter, e(t) and u(t) the error
and control input signals as indicated in Figure 1. Zero mean, Gaussian process and measurement noises
are captured in the ws(t) and v(t) signals. The process noise covariance Qs is 7x7 diagonal matrix, and R
represents the variance of the measurement noise of the only output signal u(t). The parameter filter state
space equations are shown in Equations (4) and (5):

θ̇(t) = wp(t) cov(wp(t)) = Qp (4)

u(t) = g(xs(t), θ(t)) + v(t) cov(v(t)) = R (5)

with θ = [ωn ζn τv]
T
. The measurement equation is the same as for the state filter. It can be seen that

the evolution of the time-varying parameter vector θ is only driven by the zero mean white process noise
wp. The variance of wp is given by the diagonal elements of the 3x3 matrix Qp, the process noise covariance
matrix. Modeling unknown time-varying parameters as a random walk process proved to be a successfull
and general method in previous research.15 The same method is applied for the states Kp and Kv in the
state filter.

The discrete time equations of the two filters running in parallel are given below.
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Parameter filter prediction:

θ
−
k = θ

+
k−1 (6)

P−
p,k = Φp,k−1P

+
p,k−1Φ

T
p,k−1 + Γp,k−1QpΓ

T
p,k−1 (7)

State filter prediction:

x
−
s,k = x

+
s,k−1 + f(x+

s,k−1, ek−1, θ
−
k )∆t (8)

P−
s,k = Φs,k−1P

+
s,k−1Φ

T
s,k−1 + Γs,k−1QsΓ

T
s,k−1 (9)

State filter (partial) correction:

Ks,k = P−
s,kG

T
s,k[Gs,kP

−
s,kG

T
s,k +R]−1 (10)

P+
s,k = (I −Ks,kGs,k)P

−
s,k(I −Ks,kGs,k)

T +Ks,kRKT
s,k (11)

Parameter filter correction:

Kp,k = P−
p,k(G

tot
p,k)

T [Gtot
p,kP

−
p,k(G

tot
p,k)

T +R]−1 (12)

θ
+
k = θ

−
k +Kp,k[uk − g(x−

s,k, ek, θ
−
k )] (13)

P+
p,k = (I −Kp,kG

tot
p,k)P

−
p,k(I −Kp,kG

tot
p,k)

T +Kp,kRKT
p,k (14)

Final state filter correction:

x
+
s,k = x

−
s,k +Ks,k[uk − g(x−

s,k, ek, θ
−
k )] (15)

Where :

k, the discrete time index (16)

∆t, the time step (17)

Φs,k−1, the discrete version of Fs =
∂f(xs, ek−1, θ

−
k )

∂xs

∣

∣

∣

∣

xs=x
+

s,k−1

(18)

Γ{s,p},k−1, the discrete input identity matrices of the state and parameter filters (19)

Gs,k =
∂g(xs,k, θ

−
k )

∂xs,k

∣

∣

∣

∣

xs,k=x
−

s,k

(20)

Gtot
p,k =

dg(x−
s,k, θ)

dθ

∣

∣

∣

∣

θ=θ
−

k

(21)

K{s,p},k, the Kalman gains (22)

P{s,p},k, the state covariance matrices (23)

Note that, since not all the elements of the parameter filter θ appear in the output function g as presented
in Appendix A, and the fact that the filters depend on each other, the numerical calculation of the total
derivative of the output function with respect to the states of the parameter filter is necessary, as indicated

by
dg(xs,k,θ)

dθ . The steps required to compute this derivative, together with a more detailed representation of
the equations above, are presented in Appendix A.

B. Considerations

1. Remnant

The noise in the control loop is captured in the remnant signal. Since the control task is closed loop system,
the remnant can be seen as affecting both the process and measurement noises. Levison et al.16 showed that
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the remnant can be modeled as a first-order low-pass filter injected in the error signal (human controller’s
input), making the remnant an inherently colored noise. The process and measurement noise need to be
white, otherwise the Kalman filter is not optimal. In order to overcome this issue, the remnant can be
included in the state filter as a first order low pass filter driven by white noise. However, as Levison found,
the parameters of such filter change depending on the order of the controlled dynamics, as well as the ratio
between error velocity and error position variances. Since these parameters are not known a priori, it becomes
difficult to have an accurate representation of the remnant parameters. In this study, it was decided not
to account for the remnant in the state filter in order to avoid additional uncertainty, and assume that its
contribution is part white process noise and part white measurement noise.

2. Measurement noises

Measurement noise is typically associated with errors in the sensors used to measure system outputs, whereas
process noise typically refers to errors in the modeling of a certain system. In the case of the human control
model, the uncertainty of the model is difficult to quantify due to the inherent variability of human control
behavior. Moreover, there is no ”sensor noise”. Therefore, in this study, the covariance matrices Qs, Qp and
R are parameters that are tuned to achieve parameter estimation performance, and have no real physical
interpretation.

Many experiments that looked at identification of human manual control parameters found that the
power of the remnant accounts for 20-30% of the power of the control input u in Figure 1. In this study the
measurement noise covariance R described in Equation (3) is considered time varying, and is modeled as:

R(k) = r2σ2
u(k−5/∆t:k) (24)

meaning that the measurement noise power at time step k is a factor r2 of the variance of the control input
from the last five seconds before time step k. For example, in the case where the controlled dynamics Hc

change from single integrator to double integrator, the humans typically increase the control input power,
therefore there will be more noise in the control loop which has to be accounted for by the two filters. A
value of of 4 for the r2 factor showed good filter performance for the experimental data in Section IV, and a
value of 0.7 was chosen when the DEKF was applied on simulation data. A possible reason for the need of a
higher measurement noise power with the experimental data is the presence of more noise sources that exist
in a real scenario but not in the simulations, such as higher noise from the control input device, nonlinear
human control behavior, etc.

3. Process noise

There are two process noise covariance matrices, one for the state filter and one for the parameter filter. The
process noise covariance matrix is given by:

Qs(k) = diag
([

0 0 0 0 q2σ2
e(k−5/∆t:k) Kp,0 Kv,0

])

(25)

where Kp,0 and 0.1Kv,0 are the initial conditions for the position gain and velocity gain, and q2 represents
a proportion of the error signal variance. Note that the 5th state of the state filter relates to the error signal
e. This accounts for the fact that humans will not perfectly follow the linear model while controlling, and
can be seen as system error, which is difficult to know in advance. A value of 0.4 for q2 is used for both
the simulation and experimental data presented in Section IV. The constant process noise covariance for the
parameter filter is given by:

Qp = diag([0.1ωn,0 0.1ζn,0 0.1τv,0]) (26)

where again, ωn,0, ζn,0 and τv,0 are the initial parameters from the parameter filter.
As a rule of thumb, for the state filter it was found that the setting the last two diagonal elements of

the process noise covariance matrix equal to 100% of the initial values of Kp and Kv results in good filter
performance, for the measurement noise presented above. For the parameter filter, values of 10% of the
initial parameter estimates were used for the diagonal elements of Qp.
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This choice for the process noise covariance matrix of the parameters represents how large their variation
is expected to be over time. Since the equalization dynamics (Kp, Kv) are expected to change a lot more
than neuromuscular parameters and time delay (ωn, ζn, τv) during changes in controlled dynamics Hc, they
have higher process noise covariance values. However, a larger (or smaller) choice of measurement noise
power will have to be accounted for in the process noise by increasing (or decreasing) its covariance.

Note that since the measurement noises does not have a clear physical interpretation, similar filter
performance can be achieved with different choices of the process noise and measurement noise combinations.

This representation of the process and measurement noise covariances, together with the initial conditions,
are aimed as a guideline to facilitate the tuning of the filter. The two most important parameters for
convergence are therefore the factors r2 and q2, together with the initial covariance matrices P{s,p},0, which
depend on how far (or close) the initial parameter guesses are from the true parameters.

4. Initialization

Initial parameter estimates are important for the performance of the filter. With the Extended Kalman
filter, a poor choice of the initial estimates can result in filter divergence. Furthermore, even if the filters do
not diverge, convergence may be slow if the initial state covariance matrices do not account for the initial
state estimates being far from the true values.17, 18

The method based on Maximum Likelihood Estimation presented in [5] is used to obtain initial estimates
of the parameters of interest. Although the estimation will be biased in the presence of high remnant power,
the initial estimates obtained are sufficiently accurate to initialize the DEKF with.

In case the MLE method is not used, generic values for the initial parameters can be applied as follows:

Kp,0 = σu/σe (27)

Kv,0 = 0.5Kp,0 (28)

ωn,0 = 10 rad/s (29)

ζn,0 = 0.3 (30)

τv,0 = 0.3 s (31)

The initial error position gain Kp can be approximated by the ratio of the standard deviation of the control
input and error signals, respectively. Furthermore, controlled dynamics that are between a single and double
integrator have a lead time constant equal to the break frequency of the controlled dynamics Hc. A value
of 0.5 was used in this case, resulting in the estimated Kv. The other states in the state filter have initial
conditions equal to zero. The values chosen for ωn,0, ζn,0 and τv,0 are typically obtained for human control
parameters in compensatory tracking tasks.

The initial state covariance matrix for the state filter was chosen as:

Ps,0 = diag([0.1 0.1 0.1 0.1 0.1 10 10]) (32)

and for the parameter filter:

Pp,0 = diag([10 1 1]) (33)

For the measurement noise of the state and parameter filters, the initial value was chosen to be:

R0 = r2σ2
u,5 (34)

where σ2
u,5 represents the variance of the control input over the first 5 seconds. r2 has the same value as in

Equation (24).
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IV. Preliminary results

A. Simulation

A Simulink closed-loop simulation was created, in which the human controller model parameters were either
constant, or they all varied according to sigmoid functions. The remnant was modeled according to Levison’s
model, injected into the error signal as shown in Figure 1.

1. Constant parameters

A 90 second closed-loop simulation sampled at 100 Hz s was performed, where the controlled dynamics and
pilot model parameters were kept constant. The remnant had a break frequency of 3 rad/s, and the gain
was adjusted such that the remnant power at the control input location has a power that equals to 30 %
of the control input power. Figure 3 shows the true evolution of all parameters (red line), together with
the DEKF estimation (black line). In Figure 3f, the DEKF’s innovation is represented in red, whereas the
(square root) of the innovation covariance is shown in black. The simulated human control input is shown
in Figure 3g. For this simulation r2 had a value of 0.7, whereas q2 was set to 0.4.

It can be seen that the DEKF manages to estimate all the parameters quite closely, however with a very
small bias for the neuromuscular frequency and neuromuscular damping ratio observed in Figure 3c and
3d, respectively. It can be seen that the innovation has zero mean and it falls within the square root of
the innovation covariance matrix at each time step suggesting that the filter is optimal or close to optimal.
The variance accounted for (VAF), ignoring the first 15 seconds is 99.87%, meaning that the filter output
explains 99.87% of the variance of the measured signal u. Note that the same variance accounted for can be
obtained with different combinations of parameter estimation, that do not make physical sense in real life
(a very high neuromuscular frequency, or a negative gain, for example), but can result from incorrect tuning
of the DEKF.

2. Time-varying parameters

In order to test time-varying parameter identification, a similar simulation was performed, where the con-
trolled dynamics and the equivalent human control model parameters changed according to sigmoid functions.
The remnant had a break frequency of 3 rad/s, and the gain was adjusted such that the remnant power at
the control input location has a power that equals to 30 % of the control input power. In reality, the remnant
characteristics are also time varying, however in this simulation the remnant parameters were kept constant.
At around second 40, the controlled dynamics Hc start changing their break frequency from 3 rad/s towards
1 rad/s. As a response, the simulated error position gain Kp decreases, and the error velocity gain Kv

increases. Although in reality there isn’t much change in the neuromuscular parameters and time delay, in
this simulation ωn decreased from 8 rad/s to 6 rad/s, ζn increased from 0.3 to 0.5 and τv varied between 0.15
s and 0.25 s in a sine wave shap having a period of 90 seconds. These choices were made in order to test the
parameter estimation behavior of the filter in a scenario where all parameters change. Figure 4 shows the
true evolution of all parameters (red line), together with the DEKF estimation (black line). In Figure 4f,
the DEKF’s innovation is shown in red, whereas the square root of the innovation covariance is shown in
black. Simulated control is shown in Figure 4g. For this simulation, the same r2 and q2 factors were used
as for the constant parameter simulation, having values of 0.7 and 0.4, respectively.

The DEKF manages to converge to the true values although the initial guesses were not accurate for
all the parameters. The DEKF estimates converge to the true values after about 15 seconds. The same
bias is seen for the neuromuscular frequency and neuromuscular damping ratio. Similar to the constant
parameter simulation, it can be seen that the innovation has zero mean and it falls within the square root
of the innovation covariance matrix at each time step. The variance accounted for, ignoring the first 15
seconds, is 99.43% in this case.

Note that, since the remnant spectrum was kept constant during the simulation, r2 and q2 should in
theory also be changed over time, to keep the same ratio of remnant power to control input and error signal
variance. In reality however, the remnant spectrum changes with the controlled dynamics, and preliminary
experiment data showed that the ratio between remnant power and control input power does not change
considerably, in this case. Therefore, constant values for r2 and q2 are assumed in the remainder of this
paper.
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Figure 3: Simulation DEKF results for constant parameters.
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Figure 4: Simulation DEKF results for time-varying parameters.
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Figure 5: DEKF compared to MLE on experimental data.
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B. Time-varying multi-axis experiment

Data from a time-varying multi-axis tracking task experiment performed in [5] was used to compare the per-
formance of the DEKF to the MLE parameter estimation method. The experiment was aimed at identifying
human adaption to changing controlled dynamics. In the mentioned experiment, the controlled dynamics
changed from single integrator from double integrator following a sigmoid function. Therefore, the time-
varying parameters of interest were the error position and error velocity gains, as well as two parameters
describing the sigmoid function according to which the controlled dynamics change. Note that in this multi-
axis experiment, the shape of the parameter change was required in order to properly identify human control
parameters. Moreover, the neuromuscular parameters and the time delay were modeled as constants in the
experiment.

From the multi-axis experiment, only pitch data from one subject was analyzed here, for comparison
with our simulation. The data consists of the time average of the error signal e and control input u obtained
from six, 90 second runs, in which the pitch dynamics changed from single to double integrator-like control.
Figure 5 shows the results of the DEKF (in black lines), overlapped with the results from the MLE estimation
method (in red lines). The initial parameter estimates of the DEKF were obtained using Equations (27) -
(31). r2 was set to 4, and q2 was 0.4, the same value as in the simulation data. The other initializations
were the same as in the procedure described in Section IV.4.

Figure 5 shows the estimation performance of the DEKF compared to the MLE results from [5]. The
parameter estimations are clearly similar for both methods, and the transition from single to double integrator
dynamics is clear at around second 50. Since the DEKF does not assume a predefined scheduling for the
parameter evolution, it has more variations, as it tries to estimate the parameters at each time step. The
MLE method assumes constant time delay and neuromuscular parameters, and the DEKF results show that
there is not much variation in these parameters caused by the change in controlled dynamics. A reason for
the slow convergence of the neuromuscular frequency in Figure 5c is the bad initial estimate of neuromuscular
frequency compared to the MLE estimate. However it can also be that the participant started the run with
a lower neuromuscular frequency and kept increasing it during the run. The innovation of the DEKF has
zero mean, and is well within the bounds of the innovation covariance matrix. The variance accounted for
(calculated from second 20) is 86.59% for the MLE method, and 90.25% for the DEKF.

Note the large difference in the type of control input obtained from simulation data in Figure 4g and
the real control input of the participant of the multi-axis experiment, depicted in Figure 5g. The simulation
control input is smooth, having no discontinuities, whereas the experiment control input does not seem as
continuous, especially until around second 50. Note that the human control input in this case includes any
possible nonlinearities in the joystick, such as noise and dead band. The fact that the DEKF still manages to
estimate the parameters despite the relatively ”poor” quality of the control input data from the experiment
is promising for the applicability of the DEKF in real scenarios.

C. Sensitivity to initial conditions

Results from a few well-chosen tuning and initial parameter choices were presented in Section B. Since the
state and parameter filters depend on each other’s estimates at each time step, together with the fact that
the state space equations are linearized through the use of the EKF, initial parameter estimates are critical
for the convergence of the filter to meaningful parameters. The equations in Appendix A show that the
equalization parameters Kp and Kv do not appear in the state equation (Equation (40)), but only in the
measurement equation (Equation (41)). Thus, we expect that the DEKF will be less sensitive to the initial
choice of these parameters. However, an initial guess that is too far from the true parameter in the state
filter will affect the estimates of the parameter filter through the measurement update equation (Figure 2).

In this subsection, the DEKF is run on the same experimental data as in Figure 5, but now with
varying initial guesses for each of the five parameters. The time evolution of the respective parameter
and the innovation are shown, where the divergence of the filter can be seen in some cases. The effect on
the estimation of other parameters is not shown for brevity. The initial covariance matrix was increased
depending on how far the initial guess was form the true value of the parameters, and the process noise
covariance matrices were kept constant.

Figure 6 shows the results of the DEKF with four different levels of initial conditions for each parameter.
In Figures 6a and 6c, the error position gain and error velocity gains have initial conditions which are factors
0.1, 1, 2 and 10 times the value of the true parameter, which we define as being the parameter value found

12 of 17

American Institute of Aeronautics and Astronautics



0.1x
1x

10x

K
p
,
-

time, s

2x

0 10 20 30 40 50 60 70 80

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

(a) Error position gain.
time, s

u
-
û
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Figure 6: Initial parameter estimate sensitivity.
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by the MLE estimation method. The filter manages to converge to the true parameter value in all cases.
When Kp starts with a value that is 10 times higher than the true value, the filter converges to the MLE
estimate. However, at around second 5, it has difficulty estimating the neuromuscular damping ratio and
the time delay (not shown here). However, after second 10, all values are estimated correctly. For ωn, ζn
and τv, the initial conditions were chosen as the lower factors 0.5, 1, 1.25 and 1.75, respectively, since the
filter is more sensitive to these parameters. Figure 6e shows the estimation of the neuromuscular frequency.
When the initial ωn is 1 or 1.25 times the value of the true parameter, the filter converges for all parameters.
The filter diverges when the initial guess is too high, and although it does not diverge for the 0.5 factor case,
the estimate for the neuromuscular damping ratio is very high. The neuromuscular damping is shown in
Figure 6g. The filter does not diverge for factors 1, 1.25 and 1.75, however it seems to converge to slightly
different final values. It also converges very slowly for a small initial guess of ζn, but in this case the time
delay is overestimated. Time delay estimation is shown is Figure 6i, where this parameter converges for
all factors of 0.5, 1, 1.25 and 1.75. For the highest initial condition, the neuromuscular damping ratio is
underestimated. This is to be expected, as the time delay and the neuromuscular damping ratio both create
a phase lag at higher frequencies and affect the output of the filter in a similar way. Therefore, a higher
estimated time delay is compensated by a lower neuromuscular damping.

V. Discussion

The goal of this study was to develop a method for estimating time-varying human control behavior
based on a Dual Extended Kalman Filter. A challenge using this approach is the inclusion of process and
measurement noise, which makes it a particularly difficult task when the system is represented by a human
in a closed-loop task. In this implementation, the remnant was assumed to be a combination of a zero-mean,
Gaussian white noise, included as both process and measurement noise having powers proportional to the
input and the output of the human control model. Although Levison et al. found that the remnant has
colored characteristics,16 more accurate modeling and inclusion of the remnant spectrum in the state space
is subject to future work. Simulations were used to assess the performance of the DEKF implementation and
to provide insights on how to tune the filter for optimal performance. Constant and time-varying parameters
were used, and it was shown that the filter could estimate the parameters well in both cases, although with a
small bias for the neuromuscular parameters as shown in Figure 4c and Figure 4d. The simulations resulted
in some practical guidelines on how to obtain initial parameter estimates, and how to obtain the process and
measurement noise covariance matrices. The filter was then applied on data obtained from a time-varying
multi-axis control experiment,5 with the same tuning obtained from the simulation data. The only parameter
that needed to be adjusted was the measurement noise covariance matrix, which had to be increased in the
case of the experimental data. This is not surprising, since in reality there are more noise sources present
than in the simulations. For example, the control input device that was used in the experiment could add
additional noise in the system, which has to be accounted for by the filter. Another interesting fact is that
the control input in the experiment, shown in Figure 5g, was smooth than the ones from the simulation,
shown in Figures 3g and 4g. However, the DEKF produced parameter estimates that are very close to the
ones obtained using the Maximum Likelihood Estimation method in [5].

Due to the interdependence of the the state and parameter filters, and the linearization performed by the
Extended version of the Kalman filter, a trade-off has to be made in how fast the variation of the parameters
is captured. Increasing the process noise of the parameters could capture faster changes, however there is
a risk that the filter diverges if one estimate is too far from the true value, which will in turn affect the
estimation of all parameters. Having a lower value for the parameter process noise will capture changes
slower, however with a lower risk of filter divergence, especially since the changes in human manual control
parameters are generally small.

The sensitivity of our approach to the initial choice of parameter estimates was investigated in Section C,
where it was shown that the DEKF is more sensitive to the choice of initial neuromuscular parameters and
time delay than the initial choice of equalization parameters. However, these parameters do not typically
have much variation during human control, even with changes in vehicle dynamics. Therefore, generic values
can be used during filter initialization, as shown in Equations (29) - (31). The sensitivity analysis also showed
that the filter can have the same output error even though the estimated parameters are quite different. For
example, when the time delay was estimated as being too low, the filter overestimated the neuromuscular
damping ratio, while the filter output was identical. The filter managed to converge to the true value

14 of 17

American Institute of Aeronautics and Astronautics



only after a long time, after a few tens of seconds. This shows that even if the filter does not diverge, it
happens that the estimated parameters do no make physical sense, and an initial parameter estimate will
make the filter convergence slow. Furthermore, if the system is not sufficiently excited, the estimation of the
parameters also becomes problematic because of observability issues.

There are a few advantages using the DEKF. First, the state-space has a low dimension, the state filter
having 7 states and the parameter filter 3 states, which makes the filter computationally fast. Second, it
can estimate changes in human manual control behavior without having a priori knowledge on how the
parameters change over time. Third, it can be applied to experiment data directly, without the need of
averaging the time signals in advance, technique required in previous research in order to increase the signal-
to-noise ratio.4 Lastly, initial parameters estimates can be obtained using some simple guidelines, and the
only parameter that needs to be tuned when going from simulation to experiment data was r2, the control
input measurement noise factor. Note that the tuning was tailored to a compensatory tracking task, meaning
that when applied to a different type of human control task, different tuning of the filter might be required.

As future work, the colored characteristics of the human remnant will be included in the state space
representation explicitly. Furthermore, the possibility of automatically choosing the factors r2 and q2 will
be considered. In order to increase the applicability of the filter, its use for the multi-channel human control
models will be investigated. Lastly, a Dual Unscented Kalman Filter approach will be investigated in order
to analyze its performance in terms of speed compared to the DEKF. The ultimate goal of this research is
the development of a hardware solution that can achieve real-time identification of human manual control,
which could be used for human state monitoring, as well as adaptive haptic interfaces.

VI. Conclusions

A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual
control behavior. The state space representation of human manual control was split into two filters that
run concurrently, a state filter that estimates the equalization dynamics, and a parameter that estimates
human operator neuromuscular parameters and the time delay, which was included in the state space as a
Padé approximation. All human manual control parameters were modeled as having constant dynamics and
driven by a white noise process (”random walk”).

The DEKFmanages to estimate time-varying human control behavior in both simulated and experimental
data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices
and the initial parameter estimates. The tuning was performed on simulation data, and when applied on the
experiment data, only an increase in measurement process noise power was required in order for the filter
to converge. Poor initial choices of parameters, especially for the neuromuscular parameters and the time
delay, can lead to filter divergence or parameter estimates that do not have a real physical interpretation.
Another limitation of the filter is the need for long convergence time (a few tens of seconds), if the initial
parameter estimates are far from the true values.

Since the scheduling of a parameter change is not required in advance, and the filter shows promising
results when applied to experiment data without the need of time-averaging of multiple runs, the use of
DEKF represents a viable option for the real-time identification of human control in manual tracking tasks.
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A. Human controller state space representation

The transfer function Hp was transformed into its state space controllable canonical form in order to be
implemented in the Kalman filter. The time delay τv was approximated by a 3rd order Padé filter. The
main reason for the choice of the 3rd order approximation is the fact that the Extended Kalman filter uses
a first-order linearization of the system. Therefore, a higher order in the Padé approximation would result
in the Extended Kalman filter to not converge due to the high non-linearities in the state space.

In this section, the full form of the state space model, together with the total derivate of Gtot
p,k are

presented.

ẋs(t) = f(xs(t), e(t), θ(t)) +ws(t) (35)

θ̇(t) = wp(t) (36)

u(t) = g(xs(t), θ(t)) + v(t) (37)

xs =
[

xs,1 xs,2 xs,3 xs,4 xs,5 Kp Kv

]T

(38)

θ =
[

ωn ζn τv

]T

(39)
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g(xs, θ) =
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Gtot
p,k =

dg(x−
s,k, θ)

dθ
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∣

∣

∣
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∂θ
+
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where the Equations (42) - (45) show how the complete derivative of the states of the parameter filter with

the respect to the output equation is calculated. Note that the values of Ks,k−1,
dg(x−

s,k−1
,θ)

dθ and
dx−

s,k−1

dθ
from the previous time step are required, in order to compute the derivative numerically at the current time
step. The calculation of the complete derivative is necessary since the states of the parameter filter do not

directly appear in the output equation g. The initial values for Ks,k−1,
dg(x−

s,k−1
,θ)

dθ and
dx−

s,k−1

dθ are initialized
with 0 at the beginning of the estimation.
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